激光光谱学

激光光谱学

图书基本信息
出版时间:2008-8
出版社:世界图书出版公司
作者:德姆特勒德
页数:987
书名:激光光谱学
封面图片
激光光谱学

前言
Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.
内容概要
  《激光光谱学》系统介绍了现代激光光谱学中的基本理论,方法和应用。《激光光谱学》选题丰富,阐述清楚深刻,注重实际应用,已经成为一本经典的激光光谱学研究生教材和参考用书。此次影印的是最新的第三版。在前两版的基础上,作者做了全面的修订和增补,介绍了激光光谱学最新的实验技术和理论进展,例如:外腔中的倍频,可调控的窄带紫外光源,更灵敏的检测技术,可调谐飞秒和分飞秒激光器(X光区域和阿秒范围),可控原子分子激发,相干物质波,还有更多在化学分析,医疗诊断和工程等方面的应用。适合从事激光光谱学研究的物理学家和化学物理学家以及众多的工程人员学习和参考。  《激光光谱学》特色:(1)内容非常丰富,涵盖了激光光谱学中众多分支,并附有全面的参考文献。(2)把重要的概念和公式用边框括起来,方便读者查阅。   读者对象:适用于物理,化学和材料专业的高年级本科生、研究生和相关专业的科研人员和工程师。  目次:简介;光的吸收和发散;非线性光谱;激光拉曼光谱;束中的激光光谱;光泵谱和双共振技术;时间分辨的激光光谱;相干光谱;碰撞过程中的激光光谱;激光光谱新进展;激光光谱的应用;参考文献;主题索引。
作者简介
  德姆特勒德,德国凯泽斯劳滕大学教授,著名激光光谱学专家。创建了高分辨率激光光谱技术及其在原子分子理学中的应用这一研究领域。1995年获得由德国物理学会和物理研究所颁发的马克思—博恩奖。2000年获得洪堡基金会颁发的海森堡奖。
书籍目录
1.Introduction
2.Absorption
and
Emission
of
Light
 2.1 Cavity
Modes
 2.2 Thermal
Radiation
and
Planck's
Law
 2.3 Absorption,
Induced,
and
Spontaneous
Emission
 2.4 Basic
Photometric
Quantities
 2.5 Polarization
of
Light
 2.6 Absorption
and
Emission
Spectra
 2.7 Transition
Probabilities
 2.8 Coherence
Properties
of
Radiation
Fields
 2.9 Coherence
of
Atomic
Systems
 Problems
3.Widths
and
Profiles
of
Spectral
Lines
 3.1 Natural
Linewidth
 3.2 Doppler
Width
 3.3 Collisional
Broadening
of
Spectral
Lines
 3.4 Transit-Time
Broadening
 3.5 Homogeneous
and
Inhomogeneous
Line
Broadening
 3.6 Saturation
and
Power
Broadening
 3.7 Spectral
Line
Profiles
in
Liquids
and
Solids
 Problems
4.Spectroscopic
Instrumentation
 4.1 Spectrographs
and
Monochromators
 4.2 Interferometers
 4.3 Comparison
Between
Spectrometers
and
Interferometers
 4.4 Accurate
Wavelength
Measurements
 4.5 Detection
of
Light
 4.6 Conclusions
 Problems
5.Lasers
as
Spectroscopic
Light
Sources
 5.1 Fundamentals
of
Lasers
 5.2 Laser
Resonators
 5.3 Spectral
Characteristics
of
Laser
Emission
 5.4 Experimental
Realization
of
Single-Mode
Lasers
 5.5 Controlled
Wavelength
Tuning
of
Single-Mode
Lasers
 5.6 Linewidths
of
Single-Mode
Lasers
 5.7 Tunable
Lasers
 5.8 Nonlinear
Optical
Mixing
Techniques
 5.9 Gaussian
Beams
 Problems
6.Doppler-Limited
Absorption
and
Fluorescence
Spectroscopy
with
Lasers
 6.1 Advantages
of
Lasers
in
Spectroscopy
 6.2 High-Sensitivity
Methods
of
Absorption
Spectroscopy
 6.3 Direct
Determination
of
Absorbed
Photons
 6.4 Ionization
Spectroscopy
 6.5 Optogalvanic
Spectroscopy
 6.6 Velocity-Modulation
Spectroscopy
 6.7 Laser
Magnetic
Resonance
and
Stark
Spectroscopy
 6.8 Laser-Induced
Fluorescence
 6.9 Comparison
Between
the
Different
Methods
 Problems
7.Nonlinear
Spectroscopy
 7.1 Linear
and
Nonlinear
Absorption
 7.2 Saturation
of
Inhomogeneous
Line
Profiles
 7.3 Saturation
Spectroscopy
 7.4 Polarization
Spectroscopy
 7.5 Multiphoton
Spectroscopy
 7.6 Special
Techniques
of
Nonlinear
Spectroscopy
 7.7 Conclusion
 Problems
8.Laser
Raman
Spectroscopy
 8.1 Basic
Considerations
 8.2 Experimental
Techniques
of
Linear
Laser
Saman
Spectroscopy
 8.3 Nonlinear
Raman
Spectroscopy
8.4 Special
Techniques 8.5 Applications
of
Laser
Raman
Spectroscopy
 Problems
9.Laser
Spectroscopy
in
Molecular
Beams
 9.1 Reduction
of
Doppler
Width
 9.2 Adiabatic
Cooling
in
Supersonic
Beams
 9.3 Formation
and
Spectroscopy
of
Clusters
and
Van
der
Waals
Molecules
in
Cold
Molecular
Beams
 9.4 Nonlinear
Spectroscopy
in
Molecular
Beams
 9.5 Laser
Spectroscopy
in
Fast
Ion
Beams
 9.6 Applications
of
FIBLAS
 9.7 Spectroscopy
in
Cold
Ion
Beams
 9.8 Combination
of
Molecular
Beam
Laser
Spectroscopy
and
Mass
Spectrometry
 Problems
10.Optical
Pumping
and
Double-Resonance
Techniques
 10.1 Optical
Pumping
 10.2 Optical-RF
Double-Resonance
Technique
 10.3 Optical-Microwave
Double
Resonance
 10.4 Optical-Optical
Double
Resonance
 10.5 Special
Detection
Schemes
of
Double-Resonance
Spectroscopy
 Problems
11.Time-Resolved
Laser
Spectroscopy
 11.1 Generation
of
Short
Laser
Pulses
 11.2 Measurement
of
Ultrashort
Pulses
 11.3 Lifetime
Measurement
with
Lasers
 11.4 Pump-and-Probe
Technique
 Problems
12.Coherent
Spectroscopy
 12.1 Level-Crossing
Spectroscopy
 12.2 Quantum-Beat
Spectroscopy
 12.3 Excitation
and
Detection
of
Wave
Packets
in
Atoms
and
Molecules
 12.4 Optical
Pulse-Train
Interference
Spectroscopy
 12.5 Photon
Echoes
 12.6 Optical
Nutation
and
Free-Induction
Decay
 12.7 Heterodyne
Spectroscopy
 12.8 Correlation
Spectroscopy
 Problems
13.Laser
Spectroscopy
of
Collision
Processes
 13.1 High-Resolution
Laser
Spectroscopy
of
Collisional
Line
Broadening
and
Line
Shifts
 13.2 Measurements
of
Inelastic
Collision
Cross
Sections
of
Excited
Atoms
and
Molecules
 13.3 Spectroscopic
Techniques
for
Measuring
Collision-Induced
Transitions
in
the
Electronic
Ground
State
of
Molecules
 13.4 Spectroscopy
of
Reactive
Collisions
 13.5 Spectroscopic
Determination
of
Differential
Collision
Cross
Sections
in
Crossed
Molecular
Beams
 13.6 Photon-Assisted
Collisional
Energy
Transfer
 13.7 Photoassociation
Spectroscopy
of
Colliding
Atoms
 Problems
14.New
Developments
in
Laser
Spectroscopy
 14.1 Optical
Cooling
and
Trapping
of
Atoms
 14.2 Spectroscopy
of
Single
Ions
 14.3 Optical
Ramsey-Fringes
 14.4 Atom
Interferometry
 14.5 The
One-Atom
Maser
 14.6 Spectral
Resolution
Within
the
Natural
Linewidth
 14.7 Absolute
optical
Frequency
Measurement
and
Optical
Frequency
Standards
 14.8 Squeezing
15.Applications
of
Laser
Spectroscopy
 15.1 Applications
in
Chemistry
 15.2 Environmental
Research
with
Lasers
 15.3 Applications
to
Technical
Problems
 15.4 Applications
in
Biology
 15.5 Medical
Applications
of
Laser
Spectroscopy
 15.6 Concluding
Remarks
References
Subject
Index

章节摘录
插图:
编辑推荐
《激光光谱学(第3版)》特色:(1)内容非常丰富,涵盖了激光光谱学中众多分支,并附有全面的参考文献。(2)把重要的概念和公式用边框括起来,方便读者查阅。 读者对象:适用于物理,化学和材料专业的高年级本科生、研究生和相关专业的科研人员和工程师。
图书标签Tags
物理


下载链接

激光光谱学下载

评论与打分
  •     这本书写的真不错,内容丰富,写的较为详细,是学材料、物理、化学专业的一本较为不错的参考书。但唯一不足的是印刷质量不行,不知道是什么原因,跟复印的差不多。
  •     非常经典的的好书!值得购买~!
  •     感觉硬壳被压坏了一些但是不影响大局
  •     印刷和纸张都不错!
  •     看的时候需要带着字典。。
  •     Averygoodbook!
  •     是一本很经典的书,唯一不足的是价格太贵了。
  •     书影印质量不是很好,不过一百多能买到这个,也很不错了
  •     this is a classic book on laser spectroscopy!
  •     激光光谱学领域学习者和研究者必备的教材和工具书!
  •     激光光谱学入门及深造经典书籍。网上有最新电子版
  •     儿子是学电子的,给初中一二年级学生看才行。
  •     书的内容没想象中的实用,兴趣学习。
  •     虽然是薄薄的书却展现了居里夫人坚韧奋进,觉得在帮助人修养素质上有帮助
  •     给组里学生们买的,超越前辈!
  •     这本书还行吧,看着不爽
  •     是部好看的物理书,值得购买阅读。、
  •     学完了,适合静的下心来得理科生。
  •     不知道编的好不好,总是不错的。
  •     在外生活心静不下来,难。。。本科感觉很难
  •     解答也很详细,到了深大学起来才觉得内容挺好
  •     很实用。,黄昆老师的书
  •     需要多看,正是我需要的。
  •     感觉还比较真实,对于考前帮助很大
  •     但对于时域方法介绍不够,题适合理科的做
  •     很有帮助的。,是本好书。
  •     讲解了一些基本、常用的算法,有物理基础的介绍。
  •     还要老师辅导。,本套书真的很适合学生和老师们看
  •     划算,书是新的。卖家选的快递也很好。
  •     非常发人深思,很好。对物理有兴趣的人可以多看看
  •     他说一般般吧,还没看内容